суббота, 9 февраля 2013 г.

схема управления тиристора

Рассмотрим работу схемы. От источника Е конденсатор С заряжается через резистор R1. Как только на]пряжение на эмиттере достигнет значения Uэ.макс, диод ДБД открывается, а конденсатор С разряжается через сопротивление нагрузки RH. Когда напряжение эмиттере достигнет величины Uэ=Uэ.выкл, ДВД перестает проводить. В дальнейшем цикл включения повторяется.

Двухразовый диод имеет три вывода: эмиттер (Э), базу 1(Б1), базу 2(Б2). Участок между базами Б1 и Б2 имеет характер линейного омического сопротивления. При напряжении на эмиттере UЭ, меньшем некоторой максимальной величины Uэ.макс, переход эмиттер база (Б1) смещен в обратном направлении и двухбазовый диод закрыт. Для включения двухбазового диода необходимо выполнение следующих условий: Uэ=Uэ.макс и Iэ>Iэ.макс.

На рис. 8,а приведена схема релаксационного гене]ратора, выполненная на двухбазовом диоде (однопереходном транзисторе).

Рис. 8 Схемы формирования импульсов управления.

Для управления тиристорами применяются генераторы запускающих импульсов, схемы которых можно выполнить на транзисторах, двухбазовых и туннельных диодах, магнитных элементах, а также на маломощных тиристорах. Выбор ключевого элемента для генератора запускающих импульсов зависит от назначения схемы, а также от требований, предъявляемых к параметрам входного сигнала.

При изменении полярности приложенного напряжения переключение тиристора СТ происходит третьем квадранте его вольтамперной характеристики (UС<0). Для уменьшения влияния нагрузки на фазосдвигающую цепь R1C1 в схему включен резистор R3. Для увеличения предела регулировки угла отпирания тиристора СТ параллельно цепи R1C1 включена вспомогательная цепь R2C2.

На рис. 7 изображена двухполупериодная схема с управлением по фазе, которая предназначена для питания нагрузки переменным напряжением. В этой схеме применены основной тиристор СТ и вспомогательный диодный тиристор СД. С помощью тиристора СД осуществляется управление тиристором СТ импульсами различной полярности. Кроме того, тиристор СД позволяет уменьшить мощность рассеивания на управляющем электроде СТ в промежутках между импульсами. Полярность заряда конденсатора С1 меняется каждый полупериод. Обладая двухсторонней проводимостью, тиристор СД позволяет конденсатору С1 поочередно разряжаться. При положительной полуволне питающего напряжения на управляющий электрод тиристора СТ поступает положительный импульс и прибор переключается в первом квадранте вольтамперной характерней (UС>0).

Рис. 7 Схема фазового управления симметричным тиристором.

В схеме, приведенной на рис. 6,б, для коммутации управляющего сигнала применен магнитоуправляемый контакт МУК.

В схеме на рис. 6,а в качестве ключа применен транзистор Т. В исходном состоянии все напряжение сети приложено к первичной обмотке трансформатора Тр2 и на управляющем электроде тиристора СТ сигнал отсутствует. При подаче на входные клеммы транзистора Т входного сигнала он открывается и закорачивает вторичную обмотку трансформатора Тр2. Все напряжение сети прикладывается к трансформатору Tp1 и через диоды Д1 и Д2 поступает на вход тиристора СТ. Тиристор СТ отпирается, и через нагрузку Rн начинает протекать ток: напряжение на трансформаторе Tp1 уменьшается, что приводит к исчезновению сигнала управления. Процесс отпирания тиристора СТ повторяется каждый полупериод питающего напряжения, обеспечивая на его входе сигнал управления положительной полярности.

Рис. 6 Схемы управления симметричным тиристором.

На рис. 5 приведена схема управления триодными тиристорами, которые включены встречно - параллельно. Управляющие импульсы формируются из анодного на]пряжения, поэтому работоспособность схемы не зависит от характера нагрузки. Резистор R предназначен для ограничения величины тока управления. При замыкании ключа К отпирается один из тиристоров ТТ1 или ТТ2, к аноду которого в этот момент приложено положительное напряжение. Запирание тиристоров производится при прохождении тока через нулевое значение.

Рис. 5 Схема управления триодными тиристорами.

В отличие от схемы, изображенной на рис. 4,а, в схеме на рис. 4,б контакт К нормально замкнут. При размыкании контакта К на вход тиристора СТ подается запускающий сигнал и прибор включается. Когда кон]такт К замкнут, вход тиристора СТ зашунтирован.

Когда в схеме (рис. 4) контакт К реле Р разомкнут, к управляю]щему электроду тиристорa СТ сигнал не поступа]ет и он заперт. При за]мыкании контакта К на вход тиристора СТ через ограничительный резистор Ry поступает сигнал и пе]реключает прибор в про]водящее состояние. Бу]дучи включенным, тири]стор СТ шунтирует цепь контакта К, ограничивая ток через него.

Рис. 4 Схемы подачи импульса запуска на симметричный тиристор

Управление симме]тричными тиристорами можно производить и непосредственно от се]ти переменного тока (рис. 4).

В случае индуктивной нагрузки необходимо приме]нять специальные меры по уменьшению допустимой ско]рости нарастания напряжения du/dt. Как видно из гра]фика на рис. 3,г, при прохождении тока через нуле]вое значение питающее напряжение в этот момент имеет значительную величину противоположной полярности. При запирании тиристора СТ при нулевом токе его на]пряжение целиком прикладывается к тиристору с высо]кой скоростью, что может привести к выходу прибора из строя или включению его без подачи входного сиг]нала. Для уменьшения скорости нарастания напряжения силовые электроды тиристора шунтируют RС-цепью.

Схемы управления тиристорамиСтраница: 2/3

Схемы управления тиристорами - Студентам - Radioland

Комментариев нет:

Отправить комментарий